引言
在之前的文章中,我们讨论了一元函数 $f(x)$ 的泰勒展开。
那么,多元函数的泰勒展开应该如何表示呢?
首先,我们来讨论二元函数 $f(x, y)$ 的泰勒展开。
二元函数的泰勒展开
当函数 $f(x, y)$ 在包含 $x = a, y = b$ 的区间内无限次可微时,
\begin{eqnarray*}
f(x + a, y + b) = \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y} \right)^k f(x, y)
\end{eqnarray*}
可以表示为上式。
f(x + a, y + b) = \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y} \right)^k f(x, y)
\end{eqnarray*}
为什么成立?
让我们用参数 $t$ 来表示二元函数 $z = f(x, y)$ 的 $x, y$,如下所示:
\begin{eqnarray*}
x &=& x_0 + at \\
y &=& y_0 + bt
\end{eqnarray*}
x &=& x_0 + at \\
y &=& y_0 + bt
\end{eqnarray*}
这里,$x_0, y_0, a, b$ 为常数。这样,由于 $z = f(x, y) = f(x_0 + at, y_0 + bt)$,
\begin{eqnarray*}
z = z(t)
\end{eqnarray*}因此 $z$ 可以看作是 $t$ 的一元函数。
z = z(t)
\end{eqnarray*}因此 $z$ 可以看作是 $t$ 的一元函数。
现在,让我们求 $z(t)$ 对 $t$ 的导数。根据复合函数的求导法则,可以表示为:
\begin{eqnarray}
\frac{\mathrm{d}z}{\mathrm{d}t}=\frac{\partial z}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t}+\frac{\partial z}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}
\end{eqnarray}
\frac{\mathrm{d}z}{\mathrm{d}t}=\frac{\partial z}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t}+\frac{\partial z}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}
\end{eqnarray}
这里,
\begin{eqnarray*}
\frac{\mathrm{d}x}{\mathrm{d}t} &=& \frac{\mathrm{d}}{\mathrm{d}t}(x_0 + at) = a \\
\frac{\mathrm{d}y}{\mathrm{d}t} &=& \frac{\mathrm{d}}{\mathrm{d}t}(y_0 + bt) = b
\end{eqnarray*}
\frac{\mathrm{d}x}{\mathrm{d}t} &=& \frac{\mathrm{d}}{\mathrm{d}t}(x_0 + at) = a \\
\frac{\mathrm{d}y}{\mathrm{d}t} &=& \frac{\mathrm{d}}{\mathrm{d}t}(y_0 + bt) = b
\end{eqnarray*}
代入后,(1)式变为
\begin{eqnarray}
\begin{split}
\frac{\mathrm{d}z}{\mathrm{d}t} &=& a \frac{\partial z}{\partial x} +b \frac{\partial z}{\partial y} \\
&=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) z
\end{split}
\end{eqnarray}
\begin{split}
\frac{\mathrm{d}z}{\mathrm{d}t} &=& a \frac{\partial z}{\partial x} +b \frac{\partial z}{\partial y} \\
&=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) z
\end{split}
\end{eqnarray}
。
接下来,$z(t)$ 对 $t$ 的二阶导数为:
\begin{eqnarray*}
\frac{\mathrm{d}^2z}{\mathrm{d}t^2} = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}z}{\mathrm{d}t} \right) &\underset{(2)より}{=}& \frac{\mathrm{d}}{\mathrm{d}t} \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) z \\
&=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) \frac{\mathrm{d}z}{\mathrm{d}t} \\
&\underset{(2)より}{=}& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) z \\&=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 z \tag{3}
\end{eqnarray*}
\frac{\mathrm{d}^2z}{\mathrm{d}t^2} = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}z}{\mathrm{d}t} \right) &\underset{(2)より}{=}& \frac{\mathrm{d}}{\mathrm{d}t} \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) z \\
&=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) \frac{\mathrm{d}z}{\mathrm{d}t} \\
&\underset{(2)より}{=}& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) z \\&=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 z \tag{3}
\end{eqnarray*}
可以表示为上式。
同理,三阶导数……$n$ 阶导数为:
\begin{eqnarray*}
\frac{\mathrm{d}^3z}{\mathrm{d}t^3} &=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^3 z \\
& \vdots & \\
\frac{\mathrm{d}^n z}{\mathrm{d}t^n} &=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^n z \\
\end{eqnarray*}
\frac{\mathrm{d}^3z}{\mathrm{d}t^3} &=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^3 z \\
& \vdots & \\
\frac{\mathrm{d}^n z}{\mathrm{d}t^n} &=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^n z \\
\end{eqnarray*}
。
这里,根据 $z(t)$ 的麦克劳林展开,
\begin{eqnarray*}
z(t) = z(0) + \frac{\mathrm{d}z(0)}{\mathrm{d}t}\, t + \frac{1}{2!}\frac{\mathrm{d^2}z(0)}{\mathrm{d}t^2}\, t^2 + \cdots
\end{eqnarray*}
z(t) = z(0) + \frac{\mathrm{d}z(0)}{\mathrm{d}t}\, t + \frac{1}{2!}\frac{\mathrm{d^2}z(0)}{\mathrm{d}t^2}\, t^2 + \cdots
\end{eqnarray*}
代入 $t = 1$ 得到
\begin{eqnarray*}
z(1) = z(0) + \frac{\mathrm{d}z(0)}{\mathrm{d}t} + \frac{1}{2!}\frac{\mathrm{d^2}z(0)}{\mathrm{d}t^2} + \cdots \tag{☆}
\end{eqnarray*}
z(1) = z(0) + \frac{\mathrm{d}z(0)}{\mathrm{d}t} + \frac{1}{2!}\frac{\mathrm{d^2}z(0)}{\mathrm{d}t^2} + \cdots \tag{☆}
\end{eqnarray*}
。
现在,由于 $z(t) = f(x_0 + at,\ y_0 + bt)$,
(☆)的左边为:
\begin{eqnarray*}
(☆)左边: z(1) &=& f(x_0 + a\cdot 1,\ y_0 + b\cdot 1) \\
&=& f(x_0 + a, y_0 + b)\end{eqnarray*}
(☆)左边: z(1) &=& f(x_0 + a\cdot 1,\ y_0 + b\cdot 1) \\
&=& f(x_0 + a, y_0 + b)\end{eqnarray*}
。
(☆)的右边为:
\begin{eqnarray*}
z(0) &=& f(x_0, y_0) \\
\\
\frac{\mathrm{d}z(0)}{\mathrm{d}t} &\underset{(2)より}{=}& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) z(0) = \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) f(x_0, y_0) \\
\\
\frac{\mathrm{d^2}z(0)}{\mathrm{d}t^2} &\underset{(3)より}{=}& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 z(0) = \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 f(x_0, y_0) \\
&\vdots&
\end{eqnarray*}
z(0) &=& f(x_0, y_0) \\
\\
\frac{\mathrm{d}z(0)}{\mathrm{d}t} &\underset{(2)より}{=}& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) z(0) = \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) f(x_0, y_0) \\
\\
\frac{\mathrm{d^2}z(0)}{\mathrm{d}t^2} &\underset{(3)より}{=}& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 z(0) = \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 f(x_0, y_0) \\
&\vdots&
\end{eqnarray*}
因此,
\begin{eqnarray*}
(☆)右边: &&z(0) + \frac{\mathrm{d}z(0)}{\mathrm{d}t} + \frac{1}{2!}\frac{\mathrm{d^2}z(0)}{\mathrm{d}t^2} + \cdots\\
&=&f(x_0,\ y_0) + \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) f(x_0, y_0) + \frac{1}{2!} \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 f(x_0, y_0) +\cdots
\end{eqnarray*}
(☆)右边: &&z(0) + \frac{\mathrm{d}z(0)}{\mathrm{d}t} + \frac{1}{2!}\frac{\mathrm{d^2}z(0)}{\mathrm{d}t^2} + \cdots\\
&=&f(x_0,\ y_0) + \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) f(x_0, y_0) + \frac{1}{2!} \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 f(x_0, y_0) +\cdots
\end{eqnarray*}
。
因此,(☆)式为
\begin{eqnarray}
f(x_0+a,\ y_0+b) = f(x_0,\ y_0) + \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) f(x_0, y_0) + \frac{1}{2!} \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 f(x_0, y_0) +\cdots
\end{eqnarray}
f(x_0+a,\ y_0+b) = f(x_0,\ y_0) + \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) f(x_0, y_0) + \frac{1}{2!} \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 f(x_0, y_0) +\cdots
\end{eqnarray}
可表示为上式。
将 $x_0, y_0$ 分别替换为 $x, y$,得到
\begin{eqnarray*}
f(x+a,\ y+b) &=& f(x,\ y) + \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) f(x, y) + \frac{1}{2!} \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 f(x, y) +\cdots \\
\\
&=&\sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y} \right)^k f(x,\ y)
\end{eqnarray*}
f(x+a,\ y+b) &=& f(x,\ y) + \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) f(x, y) + \frac{1}{2!} \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 f(x, y) +\cdots \\
\\
&=&\sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y} \right)^k f(x,\ y)
\end{eqnarray*}
这样,我们就得到了二元函数泰勒展开的表达式。
多元函数的泰勒展开
一般地,多元函数的泰勒展开可以表示如下:
\begin{eqnarray*}
f(x+a) &=& \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} \right)^k f(x) \\
\\
f(x+a,\ y+b) &=& \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} + b
\frac{\partial}{\partial y}\right)^k f(x,\ y) \\
\\
f(x+a,\ y+b,\ z+c) &=& \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} + b
\frac{\partial}{\partial y} + c \frac{\partial}{\partial z} \right)^k f(x,\ y,\ z) \\
&\vdots&
\end{eqnarray*}
f(x+a) &=& \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} \right)^k f(x) \\
\\
f(x+a,\ y+b) &=& \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} + b
\frac{\partial}{\partial y}\right)^k f(x,\ y) \\
\\
f(x+a,\ y+b,\ z+c) &=& \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} + b
\frac{\partial}{\partial y} + c \frac{\partial}{\partial z} \right)^k f(x,\ y,\ z) \\
&\vdots&
\end{eqnarray*}
因此,$n$ 元函数的泰勒展开如下所示:
$n$ 元函数的泰勒展开
\begin{align*}
&f(x_1+a_1,\ x_1+a_2, \dots, x_n+a_n) \\
&\ \ \ \ \ \ \ \ \ \ \ \ = \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a_1 \frac{\partial}{\partial x_1} + a_2
\frac{\partial}{\partial x_2} + \cdots + a_n \frac{\partial}{\partial x_n} \right)^k f(x_1,\ x_2, \dots, x_n)
\end{align*}
&f(x_1+a_1,\ x_1+a_2, \dots, x_n+a_n) \\
&\ \ \ \ \ \ \ \ \ \ \ \ = \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a_1 \frac{\partial}{\partial x_1} + a_2
\frac{\partial}{\partial x_2} + \cdots + a_n \frac{\partial}{\partial x_n} \right)^k f(x_1,\ x_2, \dots, x_n)
\end{align*}






