Binomial And Polynomial Theorem Proofs

数学

This article is available in: 日本語

Introduction

The binomial theorem is a very versatile theorem that shows up in a variety of places. In this article, we will discuss the binomial theorem and its generalization, the polynomial theorem.

Binomial theorem

Any power of $(x + y)$ is

\begin{eqnarray*}
(x + y)^n = x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \cdots + \binom{n}{n-1}xy^{n-1} + y^n
\end{eqnarray*} therefore,
\begin{eqnarray*}
(x + y)^n = \sum_{k = 0}^{n} \binom{n}{k}x^k y^{n-k}\tag{☆}
\end{eqnarray*}

\begin{eqnarray*} \definecolor{myblack}{rgb}{0.27,0.27,0.27} \definecolor{myred}{rgb}{0.78,0.24,0.18} \definecolor{myblue}{rgb}{0.0,0.443,0.737} \definecolor{myyellow}{rgb}{1.0,0.82,0.165} \definecolor{mygreen}{rgb}{0.24,0.47,0.44} \end{eqnarray*}

About Binomial Theorem

First, let’s expand $(x+y)^{n}$ specifically.

\begin{eqnarray*}
(x+y)^{2}&=&x^{2}+2 x y+y^{2} \\
(x+y)^{3}&=&x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
(x+y)^{4}&=&x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}\\
&\vdots&
\end{eqnarray*}

The coefficients of each term $x^ay^b$ are called “binomial coefficients”. There is a regularity in the way these binomial coefficients appear, which is expressed by “Pascal’s triangle”.

Pascal’s triangle. Each element is represented as the sum of the two elements above it.

Thus, the $n$ lines of Pascal’s triangle represent the binomial coefficients that appear when $(x + y)^n$ is expanded.


Now let us derive the binomial theorem (☆). Here we will use the combinatorial argument.

First, the equation to be expanded is

\begin{eqnarray}
(x+y)^{n}=\underbrace{(x+y)(x+y) \cdots(x+y)}_{n \text { factors }}
\end{eqnarray}

The coefficients of the term $x^k y^{n-k}$ that appear when expanding this equation are equal to ……

(1) From $(x+y)$ with $n$ on the right-hand side Combination of taking out $x$ by $k$ and $y$ by $n-k$: $\dfrac{n!}{k!(n-k)!} = \dbinom{n}{k}$

Example

When $(x + y)^5$ is expanded, consider the coefficients of $x^3y^2$.

\begin{eqnarray*}
(x + y)^5 = \underbrace{(x+y)(x+y) \cdots(x+y)}_{5 \text { factors }}
\end{eqnarray*}

The combination of $3$ for $x$ and $2$ for $y$ from the five $(x + y)$ is

\begin{eqnarray*}
\binom{5}{3} \cdot \binom{2}{2} &=& \frac{5!}{3!(5-3)!} \cdot \frac{2!}{2!(2-2)!} \\
&=& \frac{5!}{3!(5-3)!} = 10
\end{eqnarray*}

Thus, the coefficient of $x^3y^2$ is $10$.

Therefore,

\begin{eqnarray*}
(x + y)^n &=& x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \cdots + \binom{n}{n-1}xy^{n-1} + y^n \\
&=& \sum_{k = 0}^{n} \binom{n}{k}x^k y^{n-k}
\end{eqnarray*}

About polynomial theorem

Consider the polynomial theorem as a generalization of the binomial theorem.

Polynomial theorem

Any power of $\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}$ is

\begin{align*}
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n} &= \sum_{k_{1}+k_{2}+\cdots+k_{m}=n}\ \binom{n}{k_{1}, k_{2}, \ldots, k_{m}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{m}^{k_{m}} \\
&= \sum_{k_{1}+k_{2}+\cdots+k_{m}=n} \frac{n !}{k_1!\ k_2!\ \cdots\ k_m!} \ x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{m}^{k_{m}}
\end{align*}

put simply

When $\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}$ is expanded, the term: $x_{1}^{k_1}x_{2}^{k_2}\cdots x_{m}^{k_m}$ is the following coefficient

\begin{align*}
\dfrac{n !}{k_1!\ k_2!\ \cdots\ k_m!} \tag{♡}
\end{align*}

※where, $\ \ (k_1 + k_2 + \cdots + k_m = n)$

Again, let’s use the combinatorial argument to derive $(\heartsuit)$.

The expression to be expanded is written as follows

\begin{eqnarray}
(x_1+x_2+\cdots+x_m)^{n}=\underbrace{(x_1+x_2+\cdots+x_m)\cdots(x_1+x_2+\cdots+x_m)}_{n \text { factors }}
\end{eqnarray}

The coefficients of the term $x_{1}^{k_1}x_{2}^{k_2}\cdots x_{m}^{k_m}$ that appears when expanding this expression are equal to ……

(2) From $(x_1+x_2+\cdots+x_m)$, where $n$ are on the right-hand side Combination of $x_1$ with $k_1$, $x_2$ with $k_2$, $\cdots$ and $x_m$ with $k_m$

Example

When $(x + y+z)^6$ is expanded, consider the coefficients of $x^3y^2z$.

\begin{eqnarray*}
(x + y+z)^6 = \underbrace{(x+y+z) \cdots(x+y+z)}_{6 \text { factors }}
\end{eqnarray*}

The combination of $3$ for $x$, $2$ for $y$, and $1$ for $z$ from the six $(x + y+z)$ is

\begin{eqnarray*}
\binom{6}{3} \cdot \binom{3}{2}\cdot \binom{1}{1} &=& \frac{6!}{3!\textcolor{myred}{\cancel{\textcolor{myblack}{(6-3)!}}}} \cdot \frac{\textcolor{myred}{\cancel{\textcolor{myblack}{3!}}}}{2!\textcolor{myblue}{\cancel{\textcolor{myblack}{(3-2)!}}}} \cdot \frac{\textcolor{myblue}{\cancel{\textcolor{myblack}{1!}}}}{1!}\\
&=& \frac{6!}{3!2!1!} = 60
\end{eqnarray*}

Thus, the coefficient of $x^3y^2z$ is $60$.

The combination of $x_1$ with $k_1$, $x_2$ with $k_2$, $\cdots$, and $x_m$ with $k_m$ from $(x_1+x_2+\cdots+x_m)$, which has $n$ pieces, is as follows

\begin{eqnarray*}
&&\binom{n}{k_1} \cdot \binom{n-k_1}{k_2} \cdot \binom{n-k_1-k_2}{k_3} \cdots \binom{n-k_1- \cdots -k_m}{k_m} \\
\\
&=& \frac{n!}{k_1!\textcolor{myred}{\cancel{\textcolor{myblack}{(n-k_1)!}}}} \cdot \frac{\textcolor{myred}{\cancel{\textcolor{myblack}{(n-k_1)!}}}}{k_2!\textcolor{myblue}{\cancel{\textcolor{myblack}{(n-k_1-k_2)!}}}} \cdot \frac{\textcolor{myblue}{\cancel{\textcolor{myblack}{(n-k_1-k_2)!}}}}{k_3!\textcolor{myyellow}{\cancel{\textcolor{myblack}{(n-k_1-k_2-k_3)!}}}}\cdots \frac{\textcolor{mygreen}{\cancel{\textcolor{myblack}{(n-k_1-\cdots -k_m)!}}}}{k_m!(n-k_1-\cdots-k_m)!} \\
&=& \frac{n!}{k_1!\ k_2!\ \cdots\ k_m!} \cdot \frac{1}{(n – (\underbrace{k_1+ \cdots + k_m}_{= n}) )!}
\end{eqnarray*}

Therefore, $(\heartsuit)$ holds.

タイトルとURLをコピーしました