The Binomial and Multinomial Theorems: Proofs and Examples

数学

Introduction

The Binomial Theorem is a highly versatile theorem that appears in various contexts. In this article, we will discuss the Binomial Theorem and its generalization, the Multinomial Theorem.

Binomial Theorem

Any power of $(x + y)$ can be expressed as

\begin{eqnarray*}
(x + y)^n = x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \cdots + \binom{n}{n-1}xy^{n-1} + y^n
\end{eqnarray*}that is,
\begin{eqnarray*}
(x + y)^n = \sum_{k = 0}^{n} \binom{n}{k}x^k y^{n-k}\tag{☆}
\end{eqnarray*}

and can be expanded as such.

※ Here $\dbinom{n}{k} = {}_n \mathrm{C} _k \equiv \dfrac{n!}{k!(n-k)!}$.

About the Binomial Theorem

First, let’s concretely expand $(x+y)^{n}$.

\begin{eqnarray*}
(x+y)^{2}&=&x^{2}+2 x y+y^{2} \\
(x+y)^{3}&=&x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
(x+y)^{4}&=&x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}\\
&\vdots&
\end{eqnarray*}

Here, the coefficient of each term $x^ay^b$ is called a “binomial coefficient“. There is a pattern in how these binomial coefficients appear, which is expressed in “Pascal’s Triangle“.

Pascal’s Triangle. Each element is represented as the sum of the two elements above it.

In this way, the $n$-th row of Pascal’s Triangle represents the binomial coefficients that appear when $(x + y)^n$ is expanded.


Now, let’s derive the Binomial Theorem (☆). Here we will use combinatorial arguments.

First, we write the expression to be expanded as

\begin{eqnarray}
(x+y)^{n}=\underbrace{(x+y)(x+y) \cdots(x+y)}_{n \text { factors }}
\end{eqnarray}

When this expression is expanded, the coefficient of the term $x^k y^{n-k}$ that appears is……

(1) From the $n$ factors of $(x+y)$ on the right-hand side,
the number of ways to select $k$ instances of $x$ and $n-k$ instances of $y$: $\dfrac{n!}{k!(n-k)!} = \dbinom{n}{k}$
which is equal to this.

Concrete Example

・Consider the coefficient of $x^3y^2$ when $(x + y)^5$ is expanded.

\begin{eqnarray*}
(x + y)^5 = \underbrace{(x+y)(x+y) \cdots(x+y)}_{5 \text { factors }}
\end{eqnarray*}

The number of ways to select $3$ instances of $x$ and $2$ instances of $y$ from the $5$ factors of $(x + y)$ is

\begin{eqnarray*}
\binom{5}{3} \cdot \binom{2}{2} &=& \frac{5!}{3!(5-3)!} \cdot \frac{2!}{2!(2-2)!} \\
&=& \frac{5!}{3!(5-3)!} = 10
\end{eqnarray*}

Therefore, the coefficient of $x^3y^2$ is $10$.

Therefore,

\begin{eqnarray*}
(x + y)^n &=& x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \cdots + \binom{n}{n-1}xy^{n-1} + y^n \\
&=& \sum_{k = 0}^{n} \binom{n}{k}x^k y^{n-k}
\end{eqnarray*}

holds.

About the Multinomial Theorem

Let’s consider the Multinomial Theorem as a generalization of the Binomial Theorem.

Multinomial Theorem

Any power of $\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}$ can be expressed as

\begin{align*}
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n} &= \sum_{k_{1}+k_{2}+\cdots+k_{m}=n}\ \binom{n}{k_{1}, k_{2}, \ldots, k_{m}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{m}^{k_{m}} \\
&= \sum_{k_{1}+k_{2}+\cdots+k_{m}=n} \frac{n !}{k_1!\ k_2!\ \cdots\ k_m!} \ x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{m}^{k_{m}}
\end{align*}

and can be expanded as such.

It’s a bit complex, but essentially

When $\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}$ is expanded, the coefficient of the term $x_{1}^{k_1}x_{2}^{k_2}\cdots x_{m}^{k_m}$ is as follows:

\begin{align*}
\dfrac{n !}{k_1!\ k_2!\ \cdots\ k_m!} \tag{♡}
\end{align*}

※Here, $\ \ (k_1 + k_2 + \cdots + k_m = n)$

This is what it means.

Here too, let’s use combinatorial arguments to derive $(\heartsuit)$.

We write the expression to be expanded as

\begin{eqnarray}
(x_1+x_2+\cdots+x_m)^{n}=\underbrace{(x_1+x_2+\cdots+x_m)\cdots(x_1+x_2+\cdots+x_m)}_{n \text { factors }}
\end{eqnarray}

When this expression is expanded, the coefficient of the term $x_{1}^{k_1}x_{2}^{k_2}\cdots x_{m}^{k_m}$ that appears is……

(2) From the $n$ factors of $(x_1+x_2+\cdots+x_m)$ on the right-hand side,
the number of ways to select $k_1$ instances of $x_1$, $k_2$ instances of $x_2$, $\cdots$ , $k_m$ instances of $x_m$
which is equal to this.

Concrete Example

・Consider the coefficient of $x^3y^2z$ when $(x + y+z)^6$ is expanded.

\begin{eqnarray*}
(x + y+z)^6 = \underbrace{(x+y+z) \cdots(x+y+z)}_{6 \text { factors }}
\end{eqnarray*}

The number of ways to select $3$ instances of $x$, $2$ instances of $y$, and $1$ instance of $z$ from the $6$ factors of $(x + y+z)$ is

\begin{eqnarray*} \binom{6}{3} \cdot \binom{3}{2}\cdot \binom{1}{1} &=& \frac{6!}{3!\style{color: #C73D2F}{\cancel{(6-3)!}}} \cdot \frac{\style{color: #C73D2F}{\cancel{3!}}}{2!\style{color: #0071BC}{\cancel{(3-2)!}}} \cdot \frac{\style{color: #0071BC}{\cancel{1!}}}{1!}\\ &=& \frac{6!}{3!2!1!} = 60 \end{eqnarray*}

Therefore, the coefficient of $x^3y^2z$ is $60$.

The number of ways to select $k_1$ instances of $x_1$, $k_2$ instances of $x_2$, $\cdots$ , $k_m$ instances of $x_m$ from the $n$ factors of $(x_1+x_2+\cdots+x_m)$ is as follows:

\begin{eqnarray*} \require{cancel} &&\binom{n}{k_1} \cdot \binom{n-k_1}{k_2} \cdot \binom{n-k_1-k_2}{k_3} \cdots \binom{n-k_1- \cdots -k_m}{k_m} \\ \\ &=& \frac{n!}{k_1!\style{color: #C73D2F}{\cancel{\style{color: #454545}{(n-k_1)!}}}} \cdot \frac{\style{color: #C73D2F}{\cancel{\style{color: #454545}{(n-k_1)!}}}}{k_2!\style{color: #0071BC}{\cancel{\style{color: #454545}{(n-k_1-k_2)!}}}} \cdot \frac{\style{color: #0071BC}{\cancel{\style{color: #454545}{(n-k_1-k_2)!}}}}{k_3!\style{color: #FFD12A}{\cancel{\style{color: #454545}{(n-k_1-k_2-k_3)!}}}}\cdots \frac{\style{color: #3D7870}{\cancel{\style{color: #454545}{(n-k_1-\cdots -k_m)!}}}}{k_m!(n-k_1-\cdots-k_m)!} \\ &=& \frac{n!}{k_1!\ k_2!\ \cdots\ k_m!} \cdot \frac{1}{(n – (\underbrace{k_1+ \cdots + k_m}_{= n}) )!} \end{eqnarray*}

Therefore, $(\heartsuit)$ holds.

Copied title and URL