This article is available in: 日本語
Introduction
In a previous article, we discussed the Taylor expansion of the univariate function $f(x)$.
So how can the Taylor expansion of a multivariable function be expressed?
First, we discuss the Taylor expansion of the bivariate function $f(x, y)$.
Why is it possible?
Let $x, y$ of the bivariate function $z = f(x, y)$ be expressed in terms of the mediating variable $t$ as follows
x &=& x_0 + at \\
y &=& y_0 + bt
\end{eqnarray*}
Let $x_0, y_0, a, b$ be constants. Then $z = f(x, y) = f(x_0 + at, y_0 + bt)$, so
z = z(t)
\end{eqnarray*}Thus, $z$ can be regarded as a one-variable function of $t$.
Now, let us find the derivative of $z(t)$ with $t$. From the derivative of the composite function, we can express it as follows
\frac{\mathrm{d}z}{\mathrm{d}t}=\frac{\partial z}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t}+\frac{\partial z}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}
\end{eqnarray}
Here,
\frac{\mathrm{d}x}{\mathrm{d}t} &=& \frac{\mathrm{d}}{\mathrm{d}t}(x_0 + at) = a \\
\frac{\mathrm{d}y}{\mathrm{d}t} &=& \frac{\mathrm{d}}{\mathrm{d}t}(y_0 + bt) = b
\end{eqnarray*}
Substituting this, (1) becomes
\begin{split}
\frac{\mathrm{d}z}{\mathrm{d}t} &=& a \frac{\partial z}{\partial x} +b \frac{\partial z}{\partial y} \\
&=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) z
\end{split}
\end{eqnarray}
Then the second-order derivative of $z(t)$ by $t$ is
\frac{\mathrm{d}^2z}{\mathrm{d}t^2} = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}z}{\mathrm{d}t} \right) &\underset{(2)}{=}& \frac{\mathrm{d}}{\mathrm{d}t} \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) z \\
&=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) \frac{\mathrm{d}z}{\mathrm{d}t} \\
&\underset{(2)}{=}& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) z \\&=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 z \tag{3}
\end{eqnarray*}
Similarly, the third-order derivative and … $n$-order derivative is
\frac{\mathrm{d}^3z}{\mathrm{d}t^3} &=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^3 z \\
& \vdots & \\
\frac{\mathrm{d}^n z}{\mathrm{d}t^n} &=& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^n z \\
\end{eqnarray*}
Now, from the Maclaurin expansion of $z(t)$, we have
z(t) = z(0) + \frac{\mathrm{d}z(0)}{\mathrm{d}t}\, t + \frac{1}{2!}\frac{\mathrm{d^2}z(0)}{\mathrm{d}t^2}\, t^2 + \cdots
\end{eqnarray*}
and substituting $t = 1$, we obtain
z(1) = z(0) + \frac{\mathrm{d}z(0)}{\mathrm{d}t} + \frac{1}{2!}\frac{\mathrm{d^2}z(0)}{\mathrm{d}t^2} + \cdots \tag{☆}
\end{eqnarray*}
Now, since $z(t) = f(x_0 + at,\ y_0 + bt)$, The left-hand side of (☆) is
(☆) LHS: z(1) &=& f(x_0 + a\cdot 1,\ y_0 + b\cdot 1) \\
&=& f(x_0 + a, y_0 + b)\end{eqnarray*}
The right-hand side of (☆) is
z(0) &=& f(x_0, y_0) \\
\\
\frac{\mathrm{d}z(0)}{\mathrm{d}t} &\underset{(2)}{=}& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) z(0) = \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) f(x_0, y_0) \\
\\
\frac{\mathrm{d^2}z(0)}{\mathrm{d}t^2} &\underset{(3)}{=}& \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 z(0) = \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 f(x_0, y_0) \\
&\vdots&
\end{eqnarray*}
and so it will be
(☆)RHS: &&z(0) + \frac{\mathrm{d}z(0)}{\mathrm{d}t} + \frac{1}{2!}\frac{\mathrm{d^2}z(0)}{\mathrm{d}t^2} + \cdots\\
&=&f(x_0,\ y_0) + \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) f(x_0, y_0) + \frac{1}{2!} \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 f(x_0, y_0) +\cdots
\end{eqnarray*}
Therefore, (☆) is
f(x_0+a,\ y_0+b) = f(x_0,\ y_0) + \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) f(x_0, y_0) + \frac{1}{2!} \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 f(x_0, y_0) +\cdots
\end{eqnarray}
Replacing $x_0, y_0$ with $x, y$ respectively
f(x+a,\ y+b) &=& f(x,\ y) + \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right) f(x, y) + \frac{1}{2!} \left( a \frac{\partial }{\partial x} +b \frac{\partial }{\partial y}\right)^2 f(x, y) +\cdots \\
\\
&=&\sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y} \right)^k f(x,\ y)
\end{eqnarray*}
We have obtained a tabular expression for the Taylor expansion of a two-variable function.
Taylor expansion of multivariable functions
In general, the Taylor expansion of a multivariable function can be written as follows
f(x+a) &=& \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} \right)^k f(x) \\
\\
f(x+a,\ y+b) &=& \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} + b
\frac{\partial}{\partial y}\right)^k f(x,\ y) \\
\\
f(x+a,\ y+b,\ z+c) &=& \sum_{k = 0}^{\infty} \frac{1}{k!} \left(a \frac{\partial}{\partial x} + b
\frac{\partial}{\partial y} + c \frac{\partial}{\partial z} \right)^k f(x,\ y,\ z) \\
&\vdots&
\end{eqnarray*}
Thus, the Taylor expansion of the $n$ variable function is as follows