正規分布

確率・統計学
正規分布

正規分布に従う確率変数 $X \sim \mathcal{N}(\mu, \sigma^2)$ の確率密度関数は次式で表される。

\begin{align*}
f(x;\mu, \sigma^2)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \quad(-\infty<x<\infty)
\end{align*}

そして、次の性質がある。

\begin{align*}
&E[X] = \mu \\
&V[X] = \sigma^2 \\
&M_{X}(t) = \exp \left[\mu t+\frac{\sigma^{2}}{2} t^{2}\right]
\end{align*}

\begin{align*}
\newcommand{\mat}[1]{\begin{pmatrix} #1 \end{pmatrix}}
\newcommand{\f}[2]{\frac{#1}{#2}}
\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\d}[2]{\frac{{\rm d}#1}{{\rm d}#2}}
\newcommand{\T}{\mathsf{T}}
\newcommand{\(}{\left(}
\newcommand{\)}{\right)}
\newcommand{\{}{\left\{}
\newcommand{\}}{\right\}}
\newcommand{\[}{\left[}
\newcommand{\]}{\right]}
\newcommand{\dis}{\displaystyle}
\newcommand{\eq}[1]{{\rm Eq}(\ref{#1})}
\newcommand{\n}{\notag\\}
\newcommand{\t}{\ \ \ \ }
\newcommand{\tt}{\t\t\t\t}
\newcommand{\argmax}{\mathop{\rm arg\, max}\limits}
\newcommand{\argmin}{\mathop{\rm arg\, min}\limits}
\def\l<#1>{\left\langle #1 \right\rangle}
\def\us#1_#2{\underset{#2}{#1}}
\def\os#1^#2{\overset{#2}{#1}}
\newcommand{\case}[1]{\{ \begin{array}{ll} #1 \end{array} \right.}
\newcommand{\s}[1]{{\scriptstyle #1}}
\definecolor{myblack}{rgb}{0.27,0.27,0.27}
\definecolor{myred}{rgb}{0.78,0.24,0.18}
\definecolor{myblue}{rgb}{0.0,0.443,0.737}
\definecolor{myyellow}{rgb}{1.0,0.82,0.165}
\definecolor{mygreen}{rgb}{0.24,0.47,0.44}
\newcommand{\c}[2]{\textcolor{#1}{#2}}
\newcommand{\ub}[2]{\underbrace{#1}_{#2}}
\end{align*}

積率母関数

定理1

正規分布の積率母関数は次式で表される。

\begin{align*}
&M_{X}(t) = \exp \left[\mu t+\frac{\sigma^{2}}{2} t^{2}\right]
\end{align*}

 確率変数 $Z \sim \mathcal{N}(0, 1)$ を考えて、

\begin{align*}
M_{Z}(t) &= E[e^{tZ}] \n
& = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t z} \cdot \exp \left[-\frac{z^{2}}{2}\right] d z \n
& = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left[-\frac{1}{2}\left(z^{2}-2 t z\right)\right] d z \n
& = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \[ -\f{1}{2} \{(z – t)^2 – t^2 \} \] dz \n
&= \exp\[ \f{t^2}{2} \] \cdot \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \[ -\f{(z – t)^2}{2} \] dz \n
&= \exp \[ \f{t^2}{2} \].
\end{align*}

$X = \sigma Z + \mu$ であるから、

\begin{align*}
M_X(t) &= E[e^{tX}] \n
&= E[e^{t(\sigma Z + \mu)}] \n
&= E[e^{t \mu}] \cdot E[e^{t\sigma Z}] \n
&= \exp\[\mu t + \f{\sigma^2}{2}t^2 \].
\end{align*}

期待値

定理2

正規分布の期待値は次式で表される。

\begin{align*}
E[X] = \mu
\end{align*}

 確率変数 $Z \sim \mathcal{N}(0, 1)$ を考えて、$M_Z(t) = e^{\f{t^2}{2}}$ より、

\begin{align*}
E[Z] &= \left. \d{}{t} M_Z(t) \right|_{t=0} \n
&= \left. t e^{\f{t^2}{2}} \right|_{t=0} \n
&= 0.
\end{align*}

$X = \sigma Z + \mu$ であるから、

\begin{align*}
E[X] &= \sigma E[Z] + \mu \n
&= \mu.
\end{align*}

分散

定理3

正規分布の分散は次式で表される。

\begin{align*}
V[X] = \sigma^2
\end{align*}

 確率変数 $Z \sim \mathcal{N}(0, 1)$ を考えて、$M_Z(t) = e^{\f{t^2}{2}}$ より、

\begin{align*}
E[Z^2] &= \left. \f{{\rm d}^2}{{\rm d}t^2} M_Z(t) \right|_{t=0} \n
&= \left. \d{}{t} \( t e^{\f{t^2}{2}} \) \right|_{t=0} \n
&= \left. \( e^{\f{t^2}{2}} + t^2 e^{\f{t^2}{2}}\) \right|_{t=0} \n
&= 1.
\end{align*}

よって、

\begin{align*}
V[Z] &= E[Z^2] – E[Z]^2 \n
&= 1.
\end{align*}

$X = \sigma Z + \mu$ であるから、

\begin{align*}
V[X] &= V[\sigma Z + \mu] \n
&= \sigma^2 V[Z] \n
&= \sigma^2.
\end{align*}

タイトルとURLをコピーしました